Extensions 1→N→G→Q→1 with N=C2 and Q=C7×C22.D4

Direct product G=N×Q with N=C2 and Q=C7×C22.D4
dρLabelID
C14×C22.D4224C14xC2^2.D4448,1307


Non-split extensions G=N.Q with N=C2 and Q=C7×C22.D4
extensionφ:Q→Aut NdρLabelID
C2.1(C7×C22.D4) = C7×C23.34D4central extension (φ=1)224C2.1(C7xC2^2.D4)448,789
C2.2(C7×C22.D4) = C7×C23.8Q8central extension (φ=1)224C2.2(C7xC2^2.D4)448,793
C2.3(C7×C22.D4) = C7×C23.23D4central extension (φ=1)224C2.3(C7xC2^2.D4)448,794
C2.4(C7×C22.D4) = C7×C23.63C23central extension (φ=1)448C2.4(C7xC2^2.D4)448,795
C2.5(C7×C22.D4) = C7×C24.C22central extension (φ=1)224C2.5(C7xC2^2.D4)448,796
C2.6(C7×C22.D4) = C7×C23.10D4central stem extension (φ=1)224C2.6(C7xC2^2.D4)448,802
C2.7(C7×C22.D4) = C7×C23.11D4central stem extension (φ=1)224C2.7(C7xC2^2.D4)448,805
C2.8(C7×C22.D4) = C7×C23.81C23central stem extension (φ=1)448C2.8(C7xC2^2.D4)448,806
C2.9(C7×C22.D4) = C7×C23.4Q8central stem extension (φ=1)224C2.9(C7xC2^2.D4)448,807
C2.10(C7×C22.D4) = C7×C23.83C23central stem extension (φ=1)448C2.10(C7xC2^2.D4)448,808
C2.11(C7×C22.D4) = C7×C22.D8central stem extension (φ=1)224C2.11(C7xC2^2.D4)448,888
C2.12(C7×C22.D4) = C7×C23.46D4central stem extension (φ=1)224C2.12(C7xC2^2.D4)448,889
C2.13(C7×C22.D4) = C7×C23.19D4central stem extension (φ=1)224C2.13(C7xC2^2.D4)448,890
C2.14(C7×C22.D4) = C7×C23.47D4central stem extension (φ=1)224C2.14(C7xC2^2.D4)448,891
C2.15(C7×C22.D4) = C7×C23.48D4central stem extension (φ=1)224C2.15(C7xC2^2.D4)448,892
C2.16(C7×C22.D4) = C7×C23.20D4central stem extension (φ=1)224C2.16(C7xC2^2.D4)448,893

׿
×
𝔽